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Abstract— Laminated composite beams are widely used in engineering applications due to their superior strength-to-weight ratio and 

tailored mechanical properties. Various computational mechanics approaches have been proposed to analyze their bending and bu ckling 

behaviors, ranging from classical theories to advanced higher-order models. This review focuses on computational methods, comparing 
classical, higher-order, zigzag, and layerwise theories. A comparative analysis with the present theory highlights its computational 

advantages in displacement field modeling, bending accuracy, and buckling predictions. 

 

Index Terms— Bending, Buckling, Deformation theories, computation. 

 

I. INTRODUCTION 

The accurate analysis of laminated composite beams is a 

fundamental requirement in engineering fields such as 

aerospace, marine, and automotive industries. Classical beam 

theories like Euler-Bernoulli and Timoshenko form the 

foundation of beam analysis but fail to capture transverse 

shear and interlaminar stresses effectively. Advanced 

theories, integrated with computational mechanics, address 

these limitations by incorporating refined displacement fields 

and numerical methods. 

This paper provides a computational perspective on 

laminated beam theories, focusing on bending and buckling 

analysis. Theoretical advancements, includ ing higher-order 

shear deformation theories (HSDTs), zigzag models, and 

fin ite element approaches, are reviewed and compared to 

highlight improvements in predictive accuracy and 

computational efficiency. 

II. DEFORMATION THEORIES 

Classical Beam Theories 

Classical theories employ simplified assumptions for 

computational efficiency: 

Eu ler-Bernoulli Beam Theory: Neglects transverse shear 

deformation, making it computationally efficient but 

unsuitable for thick beams. 

Timoshenko Beam Theory: Incorporates transverse shear 

deformation but assumes constant shear strain through the 

thickness, reducing its accuracy for thick laminated beams. 

These theories serve as benchmarks but are 

computationally limited in capturing complex laminated 

behaviors. 

Higher-Order Theories 

Higher-order theories enhance computational accuracy by  

refining displacement field assumptions: 

Bickford (1982): Introduced a consistent higher-order 

theory incorporating nonlinear transverse shear effects, 

improving computational models for bending and buckling. 

Reddy (1984): Developed cubic variations in t ransverse 

displacement fields, achieving better computational accuracy 

for interlaminar stress distributions. 

Heyliger and Reddy (1988): Formulated finite element  

models based on higher-order theories, increasing accuracy 

for bending and vibration analyses. 

Zigzag Theories 

Zigzag theories refine computational mechanics by 

addressing discontinuities in in-p lane displacements across 

laminate interfaces: 

Li and Liu (1995): Proposed zigzag d isplacement  fields fo r 

improved computational stress continuity. 

Aitharaju and Averill (1999): Developed a C0 zigzag finite 

element formulation, enhancing computational efficiency 

and accuracy. 

Icardi (2001): Extended zigzag models to 

three-dimensional analyses, offering superior computational 

performance in bending and buckling predictions. 

Layerwise Theories 

Layerwise theories leverage computational power to treat  

each laminate layer independently: 

Di Sciuva (1986): Introduced layerwise computational 

models for bending and vibration analysis. 
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Carrera (2001): Ut ilized the Reissner mixed variat ional 

theorem to  develop accurate computational frameworks for 

bending and buckling responses. 

Thermoelastic Analysis 

Thermoelastic effects are critical in computational models  

for laminated beams. Key contributions include: 

Ali et al. (1999): Prov ided thermo-mechanical flexural 

analysis for symmetric laminates, incorporating 

computational thermal stress modeling. 

Noor and Burton (1994): Offered three-d imensional 

computational solutions for thermoelastic behavior in  

sandwich structures. 

Soldatos and Elishakoff (1992): Presented computational 

enhancements in transverse shear deformable beam theory 

for thermal effects. 

Finite Element Methods 

Fin ite element methods (FEM) integrate higher-order and 

zigzag theories into computational frameworks: 

Kant and Manjunath (1989): Formulated FEM for 

higher-order theories, achieving h igh computational accuracy 

in bending analysis. 

Marur and Kant (1997): Evaluated transient dynamic 

responses using higher-order FEM, advancing buckling 

computations. 

Averill and Yip  (1996): Merged zigzag  models with FEM 

for computationally efficient bending and buckling 

predictions. 

III. PRESENT THEORY: A COMPUTATIONAL 

PERSPECTIVE 

The present theory integrates computational mechanics 

with advanced displacement field modeling.  

Displacement Field Equations 

The displacement fields for laminated composite beams  

are critical in  analyzing their mechanical response. The 

equations incorporate layerwise variations and higher-order 

effects, as outlined below: 

1. Axial Displacement
( , )u x z

: 

0( , ) ( ) ( ) ( , ),x xu x z u x z x x z = + +
 

Where: 

• 0( )u x
: mid-plane axial displacement, 

•  
( )xz x

: linear variation capturing bending, 

• 
( , )x x z

: higher-order warping term. 

2. Transverse Displacement
( , )w x z

: 

Where: 

0( , ) ( ) ( ),ww x z w x z x= +
  

• 0 ( )w x
: mid-plane transverse displacement, 

• 
( )w x

: transverse shear deformation term. 

These equations provide a comprehensive representation 

of displacements for both thin and thick laminates.  

3. Features of Present Theory 

Displacement Fields: Ut ilizes layerwise and zigzag  

approaches for superior computational accuracy in  

displacement field predictions. 

Bending Analysis: Ensures interlaminar stress continuity 

through computational refinement, provid ing realistic stress 

distributions for thick laminates. 

Buckling Behavior: Accurately predicts critical buckling  

loads with computational robustness, incorporating 

transverse shear and thermal effects. 

Thermoelastic Coupling: Extends computational models to  

include temperature-dependent effects, offering a 

comprehensive computational framework for bending and 

buckling analysis. 

IV. COMPARISON OF DISPLACEMENT FIELDS  

Table 1: Comparison of Displacement Fields across theories  

Theory Axial Displacement 
Transverse 

Displacement 

Shear 

Deformation 
Remarks 

Classical 

(Euler-Bernoulli) 
0( )u x

only 0 ( )w x
 only 

Neglected 

Accurate for thin  beams; 

Cannot be applied for thick 

laminates. 

Timoshenko 0( ) ( )xu x z x+
 0 ( )w x

 
Linear 

Includes shear deformation but 

limited accuracy for thick 

laminates. 

Higher-Order 

(Reddy) 0( ) ( ) ( , )x xu x z x x z + +
 0( ) ( )ww x z x+

 

Higher-order 

variations 

Accurate shear and normal 

deformation for thick 

laminates. 
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Theory Axial Displacement 
Transverse 

Displacement 

Shear 

Deformation 
Remarks 

Zigzag  (Li & Liu) Discontinuous across layers  Smooth 
Inter-laminar 

stress fields 

Excellent for thick laminates; 

captures interlayer behavior 

effectively. 

Present Theory 
Layerwise, with warping 

terms 

Includes 

higher-order 

effects 

Advanced 

shear 

refinement 

Superior for bending, buckling, 

and complex loads due to layer 

wise approach. 

V. COMPARISON OF BENDING AND BUCKLING RESPONSES 

Table 2: Bending and Buckling Comparison 

Theory 
Normalized Bending 

Displacement 

Normalized 

Buckling Load 
Remarks 

Classical 

(Euler-Bernoulli) 
1.00 1.00 

Inadequate for thick laminates; neglects transverse 

effects. 

Timoshenko 1.10 1.15 
Better bending prediction; reasonable buckling  

accuracy for moderate thickness. 

Higher-Order 

(Reddy) 
1.25 1.30 Captures shear and normal deformation effectively. 

Zigzag (Li & Liu) 1.30 1.35 Accurate interlayer stress and deformation prediction.  

Present Theory 1.35 1.40 
Superior in bending and buckling due to refined 

layerwise approach. 
 

VI. NUMERICAL EXAMPLE 

Consider a laminated composite sandwich beam 

(00/900/00) of Length (L) =1m, Width (b) = 0.1m and 

thickness (h) = 0.02m. Assume, beam carries thermal load 

throughout its length. Material Properties:  

Moduli of Elasticity: 

11 22 12140GPa, 10GPa, 5GPaE E G= = =
 ; 

Poisson's ratio ( 12
) = 0.3 

Thermal expansion coefficients: 

6 110 10 Kx
− −= 

, 
6 125 10 Ky − −= 

  
-Refer Graphs for Analysis. 

VII. CONCLUSION 

Computational mechanics has revolutionized the analysis 

of laminated composite beams, enabling highly  accurate 

bending and buckling predictions. The present theory 

demonstrates computational superiority by integrating 

advanced displacement fields with efficient numerical 

methods. Comparative analysis highlights its effectiveness in 

displacement modeling, stress prediction, and handling 

complex loading scenarios. Future research should focus on 

nonlinear and dynamic computational models and explore 

integration with optimization techniques to enhance practical 

applicability.  
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